FREQUENCY CHARACTERISTICS OF A
TEMPERATURE INTEGRATOR

E. I. Ivlev UDC 536.242

The frequency characteristics of a temperature integrator are determined. The calculations
have been verified experimentally.

Thermal noise in a stream of a heat carrying fluid is suppressed by means of temperature integrators
(TI). On account of the rather high thermal diffusivity of the material used in these devices, the heat con-
tent of the stream is distributed over the entire volume of such a device, As a result, the amplitude of
thermal perturbations in the heat carrier becomes lower at the exit from than at the entrance to a tem-
perature integrator.

The problem of noise suppression was considered in [1] with a temperature integrator of an in-
finitely high thermal diffusivity. A more rigorous analysis requires that processes in the space —time
domain inside the temperature integrator also be taken into account.

The model of a temperature integrator selected for this analysis consists of a rectangular strip
(length b, width [, thickness m) made of a heat conducting material and wetted on one side by the heat car-
rying fluid. The problem is solved under the following assumptions: a) the heat carrier mixes thoroughly
across a transverse section; b) the thermal conductivity of the heat carrier is zero; ¢) the temperature of
the conductor material is uniform over a transverse section; and d) energy enters and leaves the tempera-
ture integrator only with the stream of heat carrier,

On the basis of these assumptions, the dynamics of the thermal processes in a temperature integrator
can be described by two differential equations:

—cyv—qz dxdt == be T ixdt - ol (T — U) dxd;
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We introduce the quantities
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The differential equations can then be transformed into:
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The solution to our problem will be sought for zero initial and boundary conditions which follows
from the preceding assumptions:
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For a solution to the problem, we apply the Laplace transformation to (1) and (2). Subsequent alge-
braic operations in (1) and (2) yield

dTy (x, -+ .
Ld(i P) + prb ﬁ TL (X, p) — _5_ UL (x’ P), (3)
Tos, p) = —; [(p»rm+ BUL(x, p)— am‘”’LTf‘ﬂ] (4

With the aid of (3), we express the transform of function Tg(f) in terms of the transforms of func~
tions U(x, t) and Ty(t) [2]:

b
To(p) =Ty (o) exp (— 89 + L exp (—8t) J‘ ULx, p)exp (89) d, (5)

where

5 Pretb
b

The temperature distribution U(x, p) will be found from the equation

dUL(x, p) P+ B dUL(x, p) _ pipt+B dUL(x p)
dx3 b dx? @ty dx

L8 —<mm;';fn)é(mf +B] ;) =0, ©

which is obtained by eliminating T| (x, p) from system (3)-@).

Solving Eq. (6) with the boundary conditions

U0, 1) _ U (b, 8 _

0,
ox ox

which correspond to a thermal insulation of the TI end surfaces, then considering the relation

b
[ven e = 2 Te®)~Ta(p)]
B — (7% +B) (o +B)

g

obtained from (3)-@) and expressing the Law bf Energy Conservation applied to a temperature integrator,
and finally inserting the result into (5), we find

Te(p) = To (p) exp (— 88) + [Te () —To (p) | M (p), (0

where

B
Mp) = — N{p),
® B — (1t B) (pvs +B) ®

N(p)= r{—ﬁ [exp (rs) — exp (ry0)] [exp (i) — exp (— 88)]

1

-5 [oxp (ryb) — exp ()] [exp () — exp (— ob)]
ry+6

o .
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o+ T2 Jexp (ryb) — exp (ryh)] [exp (r,h) — exp (— 6b>]}{ "5 [exp (r,b) — exp (rah)] [exp (ryb) — 1]
ra+0 r

3 1

+ D20 [exp (rh) — exp (1)) [exp (r28) — 1] 4272 [exp (ryf) — exp (ri0)] [exp (rgh) — 1]}71 , (72)

e 73

where r;, Ty, and r; are the roots of the characteristic equation

¥+ pig + B g — P+ ﬁ p%mtf J‘fﬁ (Tm+ 71) =0.
b a1y, atrb
From (7) we find the transient characteristic of a temperature integrator in the form

B? [1 —exp (—8b) [N (p)

_Telp) _ _
Kip) = o ¥ B +B—B PN ) ®

Ty (p)

Letting p =iw in (8), according to the standard procedure, we obtain an expression for the frequency
characteristic of a temperature integrator:

B* [1 — exp (— B—iwtp)] N (i) “
— @1 T -+ 10 (T4 Te) + BN (io)

K (i0) = exp (— B — iorry) —

and an equation for finding the roots r;, r,, ryin N(iw):

P it Jo—( = + )y S RO (10

b Ty a? azb Pty b

It follows from (9) that the maximum factor of noise attenuation at w = » will be exp (—p), because
the second term in (9) then approaches zero.

Parameter 8, which characterizes the maximum attenuation of noise in a temperature integrator,
may also be called the interaction parameter, as it determines the rate of heat transfer from the heat car-
rying fluid to the TI material,

We will now consider a few special cases, Up to frequencies determined from the inequality
> |K (iw)| > exp (—P), (11)

the amplitude-frequency characteristic K(w) and the phase-frequency characteristic Ag(w) of a tempera-
ture integrator can, according to (9), be expressed as

K (@) = p? l/ N} -+ N2) {1 — 2 exp (—B) cos oty + exp (—2P)] 12
[BN; —o® t¢ ] + [0f (1 + 74 ) 4 BN, ’

o kv B ) B, _a [ B A
Ap (@) = (—1) Yoaretg -2 — (—1) Y arctg 2 —( ! __—1) 13)
where N; and N, are, respectively, the real and the imaginary part of N{iw),
Ay = Ny [l —exp(—f)cos oty ] — N, exp (—f) sinovy;
Ay = N, exp (—P) sinwt; + N, [1 —exp (—f) cos ot ];
B, =N, — vy 1y
By = of (vf -+ T+ BN
Ifa? = o or b = «, then
N (iw) — I —exp (-.[5 —iwT¢) , (14)
B+ ioT
and instead of (12)-(13) we have, respectively, for exp (~8) « 1
1
K)={] 1 2 2 " ' s(Z e 17 (15)
) = — ~ﬁ—(rf—l— Tmi) T lo@Ey+ 1) — o —ﬁ_) T } ,
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Ag (@) = (—1) arctg Cl 7( 1 — C ), (16)

where

C,=1—a ';—f(rf +2t);

] \2
C, = @® (_‘g ) T T+ 7).
When g = », (15) becomes
1
A7 e cae (1)

which corresponds to an infinitely high thermal diffusivity of the TI material [1].

A comparison will show that, when g > 1/3, expression (15) diverges from the simple expression
(17) for an ideal inertia element at frequencies w

= - _ﬁ—__——'
@ =% l/ Ty (t¢ + 21.'m)

We note that, as an approximation, the frequency characteristics (15) and (16) can be used also in
the following situations,

1. Situations of the kind where a? = », when the roots of Eq. (10) satisfy the inequalities |1;|> | r,]
and | ry| > |r;], will occur, if

. 9
vy, PP ety

b P+t

\ 2
@iy B+ o't}

b ettt it 0 rg(t g+ Te)

satisfy the inequalities k; > 1 and k, > 1. Quantities k; and k, define the convergence of (15) and
(16) to (12) and (13), respectively, If ky =k, = =, then (15) and (16) will be the frequency char-
acteristics.

2. Situations of the kind where b = », when the roots r; ~ —r, and ry satisfy the inequalities | ry|
> |I'3l, Ir2[ > |I'3l,

Ty

=

I Ty

~ oV | BTN ‘<<1,
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will occur, if quantities [ §G=1, 2,3, 4,5 defined as

l Ve oy
1 N2 ’
coz'cgm[ m2r2f - ﬁz( 1 - Tf, ) }
. Tm
3
. z
; p? (B + o)
2 = 2 23 : 27 ¢
0Ty \:m21%+52(1+ﬂ")J
T .

2
BB+ ety

37T e 2
a 17rﬂ |32+m2'cf

52 (p +¢ZTQ {l —exp (‘Tﬂﬁvm)]

-2

r

e -—_T
o e (01 VEF o ) o+ 8 (10 1)

m

978



7

i ' v b —— e
b (PP + 0’1l * th (m VVﬁZ + ﬁ)%ffﬁ)

5 3
o (g 0ty |/ o (12

m

satisfy the inequalities [ j> L Quantities [; define the convergence of (15) and (16) to (12) and
(138), respectively, If §= % then the frequency characteristics (12) and (13) become identical
to (15) and (16), respectively.

The expressions for ky, k,, and] j take into account the given relations between the roots represented
in terms of TI parameters and frequency w; they also take into account that replacing (7a) by (14) results
in an error which is a function of kj, k, I but becomes zero whenky =k, =1 = =,

The amplitude-frequency and the phase—frequency characteristics of a temperature integrator with 42
= 0 become

K(®) = exp (‘~— __“f?iﬁ_)

N ﬁz_i_mz,c'-;n ’ (18)
A — - N _TI_HE#_>
? () ) (rf oy (19)

and are more conveniently found directly from system (3)-@) with a® = 0 in @4).

For a verification of the frequency characteristics (15) and (16), curves have been plotted for a tem-
perature integrator (test accuracy within 20%) which is used in a circular instrument for measuring the
radiation power of optical quantum generators,

This temperature integrator was made of aluminum into a rectangular paralellepiped, with barriers
installed inside along the path of the fluid stream so as to lengthen the path by zigzagging and thus to maxi-
mize the surface area of thermal interaction between the heat carrying fluid and the TI material. In order
to increase the conductance of the TI volume, these barriers were joined by rods running parallel to the
injJet—outlet direction. This brought the characteristics of the temperature integrator closer to the char-
acteristics of the most effective ideal temperature integrator (17). The time constants of the temperature
integrator were in this case ¢ = 500 sec and 7., =440 sec.

In Fig. 1 are shown the theoretical and the experimental frequency characteristics of the tested de-
vice. Curve 1 is the measured amplitude-frequency characteristic and curve 3 is the measured phase-fre-
quency characteristic of this temperature integrator. The theoretical amplifude-frequency characteristic
(curve 2) and phase-frequency characteristic (curve 4) have been calcuiated by formulas (15) and (16), re-
spectively. They have been plotted with the effective value g, which takes into account, to the first ap-
proximation, the differences between the TI model (15)-(18) and the test TI:

Br= 0% (T + 2T), . (20)
where wyy is the measured frequency at which the phase characteristic crosses 90°.

Formula (20) for 3ghas been derived from the condition that a phase shift of 90° occurs at frequency
wgy O both the measured and the calculated characteristic ("tie-in" at one point),

Thus, with the aid of these theoretical characteristics, one can adequately well explain the trend
of the measured temperature integrator characteristic.

K{w) Ay
98 B 7 %0 pig. 1. Frequency character-
istics of the temperature inte~
04 &7 grator: ¢ (C); w (rad/sec),
’ 4 2 o
0% S o
0 0w o w
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We note that these results yield an analytical expression for the temperature distribution along a thin
rectangular strip of heat conducting material and also in the stream, when the temperature at the inlet to
the device varies arbitrarily.

NOTATION

is the specific heat of heat carrying fluid;

is the volume flow rate of heat carrying fluid;

is the density of heat carrying fluid;

is the heat capacity of heat conducting material of temperature integrator;
is the heat capacity of heat carrying fluid inside the TI volume;

is the coefficient of heat transfer at conductor-carrier interface;

is the thermal diffusivity of heat conducting material;

is the thermal conductivity of heat conducting material;

are the length, width, and thickness of temperature integrator;

is the interaction parameter;

is the complex variable;

is the temperature of heat carrier as a function of time and the length coordinate in the direc-
tion of flow;

is the temperature of the heat conductor as a function of time and the length coordinate in the
direction of flow; '

is the temperature at the TI inlet as a function of time;

is the temperature at the TI outlet as a function of time;

is the Laplace transform of function T (x, t);

is the Laplace transform of function U(x, t);

is the Laplace transform of function Ty(t);

is the Laplace transform of function Tg(t).
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